Klasifikasi Citra Makanan Khas Kota Pasuruan menggunakan Convolutional Neural Network

Authors

  • Erfan Zidni Universitas Mercu Buana Yogyakarta Author
  • Mutaqin Akbar Universitas Mercu Buana Yogyakarta Author

Keywords:

Classification, Typical Food, Pasuruan City, Image, Deep Learning, Convolutional Neural Network

Abstract

Typical food is an important part of Indonesia's cultural and social heritage, with each region having its own unique identity and characteristics. These variations are influenced by geographical location, distribution of spices, and local habits, creating distinctive flavors and various serving variations. Several typical dishes from Pasuruan City, such as BipangANGKAr, Botok Tempe, Cenil, and Klepon, are famous among the people. Even though it is familiar to most people, it is sometimes difficult for people to clearly distinguish types of food typical of other regions, especially if there are similarities in form or presentation. In this context, researchers consider it necessary to conduct research related to the image classification of typical food in Pasuruan City. For this purpose, the Convolution Neural Network (CNN) algorithm is used, a type of neural network specifically designed for processing visual or image data. CNNs are effective for object recognition and detection in images, with the ability to achieve high accuracy and satisfactory results. This research includes 1000 data on typical food from Pasuruan City, focusing on four types of food, namely BipangANGKAr, Botok Tempe, Cenil, and Klepon. Through the use of a single Graphical Processing Unit (GPU) in scenario 2, training time was successfully reduced to 335 seconds. The results show that with a configuration of 32 filters in the first convolution, 64 in the second convolution, and 128 in the third convolution, the model is able to produce a lower error value, namely 0.7438, with an accuracy of 100%.

References

M. Harsana and M. Triwidayati, “Potensi Makanan Tradisional Sebagai Daya Tarik Wisata Kuliner Di D.I. Yogyakarta,” Prosiding Pendidikan Teknik Boga Busana FT UNY, vol. 15, no. 1, 2020.

V. Yunita and Y. Herdiyani, “Klasifikasi Citra Menggunakan Metode Minor Component Analysis pada Sistem Temu Kembali Citra,” Jurnal Ilmiah Ilmu Komputer, vol. 15, no. 2, pp. 38–41.

A. Wicaksono, F. A. Bachtiar, and N. Y. Setiawan, “Segmentasi Pelanggan Menggunakan Fuzzy C-Means Clustering berdasarkan RFM Model pada E-Commerce (Studi Kasus: E-Commerce XYZ),” JPTIIK, vol. 5, no. 4, Apr. 2021.

D. S. Ningsih, Y. Indriani, and A. Suryani, “Keragaan Pedagang Makanan Jajanan Olahan Di Kampus Universitas Lampung,” Jurnal Ilmu Ilmu Agribisnis, vol. 6, no. 2, 2018.

Y. M. Roza, G. Razali, E. Fatmawati, S. Syamsuddin, and G. A. Wibowo, “Identitas Budaya Dan Sosial Pada Makanan Khas Daerah: Tinjauan Terhadap Perilaku Konsumsi Masyarakat Muslim Pada Bulan Ramadan Di Indonesia,” Jurnal Ilmiah Manajemen, vol. 4, no. 1, pp. 305–315, Apr. 2023, doi: 10.15575/jim.v4i1.25031.

A. R. Putri, “Pengolahan Citra Dengan Menggunakan Web Cam Pada Kendaraan Bergerak Di Jalan Raya,” JIPI, vol. 1, no. 01, Aug. 2016, doi: 10.29100/jipi.v1i01.18.

M. R. Rasyid, Z. Tahir, and N. Syafaruddin, “Digital Image Processing for Detecting Industrial Machine Work Failure with Quantization Vector Learning Method,” Pekommas, vol. 4, no. 2, p. 131, Oct. 2019, doi: 10.30818/jpkm.2019.2040203.

J. Hendarto, “Denoising Pada Citra Grayscale Menggunakan Metode Fraktal,” Jurnal Produktif, vol. 1, no. 1, 2017.

D. A. Prabowo and D. Abdullah, “Deteksi dan Perhitungan Objek Berdasarkan Warna Menggunakan Color Object Tracking,” pseudocode, vol. 5, no. 2, pp. 85–91, Sep. 2018, doi: 10.33369/pseudocode.5.2.85-91.

M. Z. Andrekha and Y. Huda, “Deteksi Warna Manggis Menggunakan Pengolahan Citra dengan Opencv Python,” Voteteknika, vol. 9, no. 4, p. 27, Dec. 2021, doi: 10.24036/voteteknika.v9i4.114251.

A. Peryanto, A. Yudhana, and R. Umar, “Rancang Bangun Klasifikasi Citra Dengan Teknologi Deep Learning Berbasis Metode Convolutional Neural Network,” Jurnal Format, vol. 8, no. 2, p. 2019.

L. Alzubaidi et al., “Review of deep learning: concepts, CNN architectures, challenges, applications, future directions,” J Big Data, vol. 8, no. 1, p. 53, Mar. 2021, doi: 10.1186/s40537-021-00444-8.

I. W. Suartika E.P, A. Y. Wijaya, and R. Soelaiman, “Klasifikasi Citra Menggunakan Convolutional Neural Network (Cnn) pada Caltech 101,” Jurnal Teknik ITS, vol. 5, no. 1, 2016.

A. Rahim, K. Kusrini, and E. T. Luthfi, “Convolutional Neural Network untuk Kalasifikasi Penggunaan Masker,” j. inspir., vol. 10, no. 2, p. 109, Dec. 2020, doi: 10.35585/inspir.v10i2.2569.

M. Akbar, “Traffic sign recognition using convolutional neural networks,” J. Teknol. dan Sist. Komput, vol. 9, no. 2, pp. 120–125, Apr. 2021, doi: 10.14710/jtsiskom.2021.13959.

M. Akbar, “Pengenalan Rambu Lalu-lintas menggunakan Convolutional Neural Network (Studi Kasus: Rambu Lalu-lintas Indonesia),” InfoTekJar, vol. 6, no. 2, pp. 272–276, Mar. 2022, doi: http://dx.doi.org/10.30743/infotekjar.v6i2.4564.

J. D. Marfianto and M. Akbar, “Klasifikasi Jenis Buah Nanas Menggunakan Convolution Neural Network,” JT, vol. 21, no. 1, Aug. 2023, doi: 10.26623/transformatika.v21i2.6369.

F. M. Qotrunnada and P. H. Utomo, “Metode Convolutional Neural Network untuk Klasifikasi Wajah Bermasker,” in PRISMA: Prosiding Seminar Nasional Matematika, Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Semarang, 2022, pp. 799–807.

M. D. Darojat, Y. A. Sari, and R. C. Wihandika, “Convolutional Neural Network untuk Klasifikasi Citra Makanan Khas Indonesia,” JPTIIK, vol. 5, no. 11, Nov. 2021.

N. Fadlia and R. Kosasih, “Klasifikasi Jenis Kendaraan Menggunakan Metode Convolutional Neural Network (CNN),” tekno, vol. 24, no. 3, pp. 207–215, 2019, doi: 10.35760/tr.2019.v24i3.2397.

Downloads

Published

2024-06-07

How to Cite

Klasifikasi Citra Makanan Khas Kota Pasuruan menggunakan Convolutional Neural Network. (2024). Informatics and Artificial Intelligence Journal, 1(2), 65-72. http://jurnal.forai.or.id/index.php/forai/article/view/10